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Statistical properties of multidimensional Burgers’ turbulence evolving in the presence
of a force field with random potential, which is delta-correlated in time and smooth
in space, are studied in the inviscid limit and at the physical level of rigorousness.
The solution algorithm reduces to finding multistream fields describing the motion of
an auxiliary gas of interacting particles in a force field. Consequently, the statistical
description of forced Burgers’ turbulence is obtained by finding the largest possible
value of the least action for the auxiliary gas. The exponential growth of the number
of streams is found to be a necessary condition for the existence of stationary regimes.

1. Introduction
The search for statistical laws governing the evolution of strongly nonlinear turbu-

lent fields and, in particular, for equilibrium states of these fields with time-invariant
statistical properties, remains an important unsolved problem in statistical hydrody-
namics. Thus, it is natural to study the same questions for a widely-used mathe-
matical model of real turbulence known as Burgers’ turbulence, i.e. the velocity field
v(x, t), x ∈ Rd, d > 1, satisfying the multidimensional Burgers’ equation

∂v

∂t
+ (v · ∇)v = µ∆v + f(x, t),

v(x, t = 0) = v0(x),

}
(1.1)

where µ > 0, and the initial velocity v0 along with force f are known and random.
Burgers’ turbulence is considered as an adequate model of certain aspects of hy-
drodynamic turbulence since, as was observed by Burgers himself (see e.g. Burgers
1974), it takes into account the competition of two most important mechanisms for
real turbulence: inertial nonlinearity and viscous dissipation. There exist, however,
some discrepancies between Burgers’ and hydrodynamic turbulence which are aggra-
vated by the fact that hydrodynamic turbulence has, primarily, a rotational character,
whereas by Burgers’ turbulence we usually mean the potential velocity field

v(x, t) = ∇S(x, t), (1.2)

generated by potential S , which then satisfies the Hamilton–Jacobi-type equation

∂S

∂t
+ 1

2
(∇S)2 = µ∆S +U(x, t), (1.3)
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where U is the potential of external forces, i.e.

f(x, t) = ∇U(x, t). (1.4)

Nevertheless, the fondness of theoreticians for potential solutions of Burgers’
equation can be justified by the existence of the explicit formulas and thus, a realistic
hope of quantitative analysis of a strongly nonlinear phenomenon. As was observed
by Kraichnan (1959, 1968), the differences between Burgers’ and hydrodynamic
turbulence are as instructive as the similarities. Also, by now, Burgers’ equation has
become one of the common nonlinear model equations of mathematical physics and
over a period of time has been discovered that such, or similar, models describe various
physical phenomena displaying shock formation. For example, during the last decade
astrophysicists studying the large-scale distribution of matter in the Universe have
convincingly demonstrated that Burgers’ turbulence provides an adequate description
of the process of formation of cellular structures (see e.g. Gurbatov, Malakhov &
Saichev 1991; Shandarin & Zeldovich 1989; Sahni, Sathyaprakash & Shandarin
1994).

The goal of the present article is to provide a quantitative study of the statistically
stationary regimes in Burgers’ turbulence. To begin with, let us review some conditions
for the existence of such equilibria.

Since dissipation leads to a decay of turbulence, to sustain it one needs a supply
of energy from outside. In hydrodynamic turbulence in nature such an ‘engine’ is
often solar energy, which generates large-scale convective eddies. Their nonlinear
descending cascade maintains in dynamic equilibrium even smaller-scale, turbulent
rotational motions.

In Burgers’ turbulence (1.1) the necessary input of energy is provided by the external
random force field f(x, t). Observe, however, that not all force fields f(x, t), even if
they are stationary in time and homogeneous in space, will lead to a stationary regime
in Burgers’ turbulence. For that reason one would like to know conditions on forces
f(x, t) which would guarantee the establishment of a stationary regime as t → ∞. A
significant result in this direction has been obtained by Sinai (1991) (see also Sinai
1996) who gave a rigorous proof of the fact that (in the one-dimensional case) there
exists a broad class of random potentials U(x, t), periodic in space and delta-correlated
in time, for which the solution v(x, t) of the Burgers’ equation converges (as t → ∞)
to a solution v∞(x, t) which is independent of the initial condition, stationary in time
and periodic in space. So much for the positive results.

On the other hand, negative examples abound and, below, we display a case of
random forces f(v, t) for which the stationary regime is impossible in principle. We
shall restrict ourselves here to the one-dimensional Burgers’ equation

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2
+ f(x, t),

v(x, t = 0) = v0(x),

 (1.5)

for the velocity field v(x, t), where v0(x) is a statistically homogeneous stochastic
process with zero mean and correlation function

Γ0(z) = 〈v0(x)v0(x+ z)〉, (1.6)

and f(x, t) is a Gaussian, delta-correlated in time and statistically homogeneous in
space, random field with correlation function

〈f(x, t)f(x+ z, t+ τ)〉 = Γf(z)δ(τ). (1.7)
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Above, and in what follows, the angled brackets denote statistical averaging over the
ensemble of realizations of the force and (if necessary) of the random initial data,
which are assumed to be independent of each other.

The spatial correlation function

Γ (z; t) = 〈v(x, t)v(x+ z, t)〉,

of the one-dimensional Burgers’ turbulence satisfies equation

∂

∂t
Γ (z; t) +

1

2

∂

∂z

[
Γ12(z; t)− Γ12(−z; t)

]
= 2µ

∂2

∂z2
Γ (z; t)+〈f(x, t) v(x+z, t)〉+〈f(x+z, t) v(x, t)〉, Γ (z; t = 0) = Γ0(z), (1.8)

where the third-order moments

Γ12(z; t) = 〈v(x, t) v2(x+ z, t)〉.

Utilizing the Furutsu–Novikov–Donsker formula (see, Appendix A and e.g. Klyatskin,
Woyczynski & Gurarie 1996a, b, where a complete proof is provided), for the cross-
correlations in (1.8) we have

〈f(x, t) v(x+ z, t)〉 = 〈f(x+ z, t) v(x, t)〉 = 1
2
Γf(z).

As a result, equation (1.8) assumes the form

∂

∂t
Γ (z; t) +

1

2

∂

∂z

[
Γ12(z; t)− Γ12(−z; t)

]
= 2µ

∂2

∂z2
Γ (z; t) + Γf(z). (1.9)

Introducing the spatial spectral density

G(κ; t) =
1

2π

∫
Γ (z; t)eiκzdz

of the Burgers’ turbulence v, and the spatial spectral density

Gf(κ) =
1

2π

∫
Γf(z)e

iκzdz,

of the force field f, we discover from (1.9) and with the help of an assumption natural
from the physical viewpoint

lim
|z|→∞

Γ12(z, t) = 0,

that, at κ = 0, the former satisfies

d

dt
G(0; t) = Gf(0), (1.10)

with the initial condition

G(0; t = 0) =
1

2π

∫
Γ0(z)dz. (1.11)

The solution of equation (1.10) is

G(0; t) = G(0, t = 0) + Gf(0)t, (1.12)

so that if Gf(0) 6= 0 then the spectral density of Burgers’ turbulence grows linearly
in time at κ = 0, which is clearly impossible in a stationary regime. Thus, we have
arrived at the following result:
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(i) A necessary condition for the existence of a stationary regime in forced Burgers’
turbulence is that

Gf(κ = 0) =
1

2π

∫
Γf(z) dz = 0, (1.13)

i.e. that the spectral density of the external force vanishes for κ = 0.
This condition and its multidimensional analogue are fulfilled, in particular, if the

random force’s potential U(x, t) is statistically homogeneous in space, and we will make
this assumption in the remainder of this paper.

It also follows from (1.12) that the spectral density of Burgers’ turbulence depends
on G(0, t = 0). This means that if G(0, t = 0) 6= 0 then Burgers’ turbulence ‘always
remembers’ the initial field. Consequently:

(ii) A necessary condition for the stationary regime in forced Burgers’ turbulence to
be ergodic (i.e. independent of the initial field) is that

G(0; t = 0) =
1

2π

∫
Γ0(z)dz = 0. (1.14)

Observe that the necessary conditions (1.13)–(1.14) for the existence of an ergodic
stationary regime are clearly satisfied for the class of forces and initial conditions
studied by Sinai (1991).

Equation (1.9) also permits us to formulate the following, somewhat less obvious,
result about statistical properties of stationary regimes in forced Burgers’ turbulence.
Its validity follows directly from (1.12)–(1.14).

(iii) Assume that there exists an ergodic stationary regime of Burgers’ turbulence and
that the limits

Γ∞(z) = lim
t→∞

Γ (z, t), Γ∞12(z) = lim
t→∞

Γ12(z, t)

exist. Then, its spectral density vanishes at κ = 0, i.e.

G∞(κ = 0) =
1

2π

∫
Γ∞(z) dz = 0. (1.15)

Other propositions will answer the question of whether a Gaussian stationary
regime is feasible. To arrive at these results, observe that in the stationary regime,
equation (1.9) takes the form

d

dz
Γ∞12:odd(z) = 2µ

d2

dz2
Γ∞(z) + Γf(z), (1.16)

where Γ∞12:odd(z) is the odd part of function Γ∞12(z). Multiplying (1.16) by z2, integrating
it term-by-term over all z, and taking into account equality (1.15), we get that∫

zΓ∞12:odd(z) dz = −2π
d2

dκ2
Gf(κ)

∣∣∣
κ=0
, (1.17)

where the spatial spectral density of the force Gf(κ) was defined above. Since,
for a Gaussian field, necessarily Γ∞12:odd(z) ≡ 0, formula (1.17) implies the following
proposition.

(iv) For the existence of a Gaussian ergodic stationary regime in forced Burgers’
turbulence it is necessary that

Gf(κ) = o(κ2), (κ→ 0).

Hence, from (1.16), we obtain another result.
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(v) If a stationary regime in forced Burgers’ turbulence is Gaussian then its spectral
density satisfies condition

G∞(κ) =
1

2µ

Gf(κ)

κ2
. (1.18)

Additional problems related to the energy dissipation mechanism in the inviscid
limit (µ → 0+) and steady-state Burgers’ turbulence are addressed in Appendix B.
Also, in the inviscid limit, we have another result which follows from (1.18).

(vi) If an ergodic stationary regime exists for inviscid forced Burgers’ turbulence then
it is non-Gaussian.

In a sense, a solution of Burgers’ equation in the inviscid limit gives a good
mathematical illustration of the Cheshire cat’s mystery: the viscosity disappears
(µ = 0) but the dissipation remains. Perhaps this is one of the reasons the study of
the inviscid limit keeps attracting researchers. The subtlety of the situation is that
in the inviscid limit the solutions of Burgers’ equation exist only in the generalized
sense. Thus, immediately one runs into the problem of selection of a suitable class of
‘physically meaningful’ generalized solutions and the question of uniqueness of these
solutions in the selected class. Although the Hopf–Cole substitution

v(x, t) = −2µ∇ lnφ(x, t) (1.19)

transforms the nonlinear Burgers’ equation (1.1) into a linear Schrödinger-type diffu-
sion equation

∂φ

∂t
= µ∆φ− 1

2µ
U(x, t)φ, (1.20)

the inverse passage from its solutions back to the solutions of Burgers’ equation
in the inviscid limit is a formidable mathematical problem. The difficulty of the
rigorous mathematical analysis of forced Burgers’ turbulence becomes more acute if
the forces are assumed to be delta-correlated in time, as we did in (1.7). In that
case, equation (1.20), even for µ > 0, loses its classical meaning and has to be
considered as a stochastic partial differential equation in a generalized sense, like
Ito or Stratonovich ordinary stochastic differential equations (see e.g. Da Prato &
Zabczyk 1992). Similar difficulties arise with the definition of nonlinear terms in the
original Burgers’ equation (1.1). These and other mathematical problems of the theory
of the forced Burgers’ equation in the inviscid limit were recently actively studied in
the mathematical litarature (see e.g. Bertini, Cancrini & Jona Lasinio 1994; Holden
et al. 1994; Nakazawa 1980, and the references quoted therein). In parallel, there
appeared papers written on the physical level of rigorousness, where on the basis
of physical assumptions and approximations, probabilistic and spectral-correlational
properties of both forced and unforced Burgers’ turbulence were studied (see e.g.
Tatsumi & Kida 1972; Gurbatov et al. 1991; Yakushkin 1981; Gurbatov & Saichev
1993; Saichev & Woyczynski 1996b, c).

In the present paper, in the inviscid limit and for an arbitrary spatial dimension
d > 1, we provide an approximate method of analysis of the statistical properties of
Burgers’ turbulence for a random force field potential which is delta-correlated in time
and smooth in space. Special attention is paid to verifying the feasibility of stationary
regimes. Thus, in §2, we provide a detailed exposition of the structure of solutions
of forced inviscid Burgers’ turbulence (1.1). In this case the solution velocity field
corresponds to the ‘least-action stream’ velocity among the multivalued velocity fields
describing the multistream motion of non-interacting particles in the force field.

Section 3 is devoted to the statistical description of the above-mentioned multi-
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stream particle motion and proposes an approximate method of finding the desired
statistical properties of Burgers’ turbulence based on searching for the largest value of
least-action. In §4, we verify the efficacy of this method for the relatively simple case of
the homogeneous Burgers’ equation with random initial conditions (see also Funaki,
Surgailis & Woyczynski 1995 and Molchanov, Surgailis & Woyczynski 1996 for other
rigorous results in this direction). We show that the results of these calculations agree
well with results obtained earlier by other methods.

In §5, we study statistical properties of Burgers’ turbulence and, in particular,
its average kinetic energy, under the assumption that the force field has a random
potential which is homogeneous in space and delta-correlated in time (a curious
maximum principle for the mean kinetic energy in one-dimensional Burgers’ turbu-
lence was discovered in Hu & Woyczynski 1994, 1995). At the same time, we also
explain the important role that the average stream number in the associated gas of
non-interacting particles plays in the analysis of Burgers’ turbulence. It turns out
that the exponential growth in time of the average number of streams is a necessary
condition for the existence of a stationary regime. In §6, using the theory of Markov
processes, we show that the average number of streams indeed grows exponentially,
at least in the one-dimensional case.

Finally, we would like to mention that in the case of simple degenerate random
potentials, a rigorous analysis of the forced Burgers’ turbulence has been done by
Molchanov, Surgailis & Woyczynski (1995a, b) using the variational method and
spectral analysis for the Schrödinger equation with a random potential. A statistical
analysis of computer simulations for related passive tracer flows has been carried out
in Janicki, Surgailis & Woyczynski (1995).

2. Least-action principle for forced Burgers’ turbulence
Despite the existence of a vast literature on the subject of Burgers’ turbulence, the

physical meaning of inviscid forced solutions have not been studied in any detail until
recently. The rigorous analysis of the problem also encounters certain difficulties (see.
e.g. Holden et al. 1994). For this reason, we devote the present section to a rather
detailed discussion of solutions of the non-homogeneous Burgers’ equation (1.1) with
the potential force (1.4) in an arbitrary d-dimensional space (x ∈ Rd, d > 1).

For the sake of simplicity we will assume in this section that the potential U(x, t)
is a sufficiently smooth function in both the space variable x and time variable t.
Additionally, we will complement equation (1.1) by the zero initial condition

v(x, t = 0) = 0. (2.1)

Non-zero initial conditions can be taken into account by a special choice of the
external force potential U(x, t).

As we observed in §1, by the Hopf–Cole transformation (1.19), equation (1.1) with
the initial condition (2.1) is reduced to a linear Schrödinger-type diffusion equation
(1.20) with initial condition

ϕ(x, t = 0) = 1. (2.2)

Its solution can be written out in the form of the well-known Feynman–Kac formula

φ(x, t) = E exp

(
− 1

2µ

∫ t

0

U
(
x− w(t) + w(τ), τ

)
dτ

)
, (2.3)

where the averaging E is with respect to the ensemble of realizations of the vector-
valued Wiener process w(t) = (wl(t)) whose statistical properties are determined by
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conditions w(0) = 0, 〈wl(t)wm(t)〉 = 2µtδlm, l, m = 1, 2, . . . , d, (see e.g. Carmona &
Lacroix 1990 for a formal derivation).

To make the further analysis more transparent, let us write (2.3) in the form of a
paths integral. For this purpose, consider a discretized form

U(x, t) = ε

∞∑
p=0

U(x, pε)δ(t− pε) (2.4)

of the external force potential (1.4). Substituting it into (2.3) and assuming, for
simplicity, that the time t = (q+ 1)ε−0, q = 0, 1, 2, . . . , is also discrete, we obtain that

φ(x, t) = E exp

[
− ε

2µ

q∑
p=0

U
(
x−

q∑
r=p

Ωr, pε
)]

, (2.5)

where

Ωr = w((r + 1)ε)− w(rε), r = 0, 1, 2, . . . ,

are mutually independent Gaussian random vectors with the correlation tensor

〈ΩrlΩrm〉 = 2µεδlm, l, m = 1, 2, . . . , d.

Writing explicitly the average in (2.5) with respect to the Gaussian ensemble
{Ω0,Ω2, . . . ,Ωq} we get

φ(x, t) =

∫
. . .

∫
exp

[
− 1

2µ

(
ε

q∑
p=0

U
(
x−

q∑
r=p

zr, pε
)

+

q∑
p=0

z2
p

2ε

)]
Dq+1(z), (2.6)

where each of the above integrals denotes integration over the d-dimensional space
and

Dq+1(z) =

(
1

4πµε

)d(q+1)/2

ddz0 ddz1 . . .d
dzq. (2.7)

Remember that our final goal is to find not the auxiliary field φ(x, t) but the solution
v(x, t) of the non-homogeneous Burgers’ equation (1.1), expressed through the former
via the Hopf–Cole formula (1.19). In that solution, in addition to φ(x, t) itself, there
also appears its gradient which we shall find by acting with the operator ∇ on the
right-hand side of equality (2.6). Putting the derivatives under the integral signs,
noticing that

∂

∂xl
exp

[
− ε

2µ

q∑
p=0

U
(
x−

q∑
r=p

zr, pε
)]

= − ∂

∂zql
exp

[
− ε

2µ

q∑
p=0

U
(
x−

q∑
r=p

zr, pε
)]

and integrating by parts the integral with respect to zq , we obtain that

− 2µ∇φ(x, t) =

∫
. . .

∫
zq

ε
exp

[
− ε

2µ

(
q∑
p=0

U
(
x−

q∑
r=p

zr, pε
)

+
1

2

(zp
ε

)2

)]
Dq+1(z).

(2.8)
Let us change the variables in integrals (2.6) and (2.8) from {zp} to

X p = x−
q∑
r=p

zr, p = 0, 1, . . . , q, X q+1 = x,
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so that zp = X p+1 − X p, p = 0, 1, . . . , q, and, as a result, equalities (2.6) and (2.8) take
the form

φ(x, t) =

∫
. . .

∫
exp

[
− ε

2µ

q∑
p=0

(
U
(
X p, pε

)
+

1

2

(X p+1 − X p

ε

)2
)]
Dq+1(X ), (2.9)

−2µ∇φ(x, t) =∫
. . .

∫
x− X q

ε
exp

[
− ε

2µ

q∑
p=0

(
U
(
X p, pε

)
+

1

2

(X p+1 − X p

ε

)2
)]
Dq+1(X ). (2.10)

Let us pass in the formulas (2.9) to the limit

ε→ 0, q = (t− ε)/ε→∞.

Note that X p can be naturally regarded as the values, for τ = pε, of a certain
vector-valued process X (τ): X p = X (pε), so that the multiple integrals (2.9) can be
interpreted as discretized functional integrals

φ(x, t) =

∫
exp

(
− 1

2µ
S[X (τ)]

)
D[X (τ)], (2.11)

− 2µ∇φ(x, t) =

∫
dX (τ)

dτ

∣∣∣∣
τ=t

exp

(
− 1

2µ
S[X (τ)]

)
D[X (τ)], (2.12)

over all the sample paths X (τ), τ ∈ [0, t], satisfying the obvious condition

X (τ = t) = x. (2.13)

In (2.11), the action functional appears:

S[X (τ)] =

∫ t

0

[
U(X (τ), τ) +

1

2

(
dX

dτ

)2
]

dτ. (2.14)

Substituting (2.11) in the Hopf–Cole formula (1.19), we obtain a solution of the
non-homogeneous Burgers’ equation (1.1), expressed through the functional integrals

v(x, t) =

∫
dX (τ)

dτ

∣∣
τ=t

exp

(
− 1

2µ
S[X (τ)]

)
D[X (τ)]∫

exp

(
− 1

2µ
S[X (τ)]

)
D[X (τ)]

. (2.15)

For arbitrary µ > 0, the above functional form of the non-homogeneous Burgers’
equation’s solution is poorly suited for analytic calculations. Nevertheless, for µ →
0+, expression (2.15) supplies a geometrically helpful Lagrangian picture of the
corresponding generalized solution which is an analogue of Feynman’s least-action
principle in quantum electrodynamics.

Least-action principle for forced Burgers’ turbulence. In the inviscid limit,

v(x, t) =
dX (τ)

dτ

∣∣∣∣
τ=t

, (2.16)

where X (τ) is the vector-valued process on which the action functional (2.14) takes the
minimal absolute value.

Note that analogous constructions of generalized solutions of first-order nonlinear
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partial differential equations can be found in the mathematical literature (see e.g.
Oleinik 1957, for the one-dimensional case, and Lions 1982, for the multidimensional
case).

The extremals of functional (2.14) fulfil equations

dX

dτ
= V ,

dV

dτ
= f(X , τ), (2.17)

together with boundary condition (2.13) combined with another obvious condition at
τ = 0:

V (τ = 0) = 0, X (τ = t) = x. (2.18)

Equations (2.17), along with

dS

dt
= U(X , τ) + 1

2
V 2, (2.19)

S(τ = 0) = 0

for the action functional, form a system of characteristic equations corresponding
to the following first-order p.d.e.’s with respect to the field S(x, t) and its gradient
v(x, t) = ∇S(x, t):

∂S

∂t
+ 1

2
(∇S)2 = U(x, t), (2.20)

∂v

∂t
+ (v · ∇)v = f(x, t). (2.21)

The latter have a clear-cut physical meaning as they describe the action and the
velocity fields for a gas of non-interacting particles in the hydrodynamic limit.

If the external force f(x, t) is a sufficiently smooth function of its arguments, then
there exists a

t1 > 0,

such that for 0 < t < t1 the solutions of equations (2.20) and (2.21) exist, are
unique and continuous for any x ∈ Rd. At this initial stage, until the formation
of discontinuities in the profile of generalized solution (2.16), it coincides with the
solution of equation (2.21).

For t > t1, the boundary-value problem (2.17)–(2.19) may, for some x, have N > 1
solutions

{Xm(τ),V m(τ), Sm(τ), m = 1, 2, . . . , N} . (2.22)

Its values for τ = t and given m,

vm(x, t) = V m(τ = t), Sm(x, t) = Sm(τ = t),

can be conveniently thought of as values of a multistream solution of equations
(2.20),(2.21) in the mth stream. Let us enumerate the streams in the increasing order

S1(x, t) < S2(x, t) < . . . < SN(x, t). (2.23)

Then the generalized solution (2.16), taking into account the appearance of discon-
tinuities, can be written in the form

v(x, t) = v1(x, t), (2.24)

(see figure 1).
The above discussion can be summarized by the following statement which forms

the basis of the remainder of this paper:
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(a)

(b)

x

x

S (x, t)

v (x, t)

3

2

1

2

1

2

1

3

1

2

3

Figure 1. A one-dimensional example of multistream fields of action S(x, t) (a), and of velocity
v(x, t) (b). The solid line in (b) indicates the stream that corresponds to the generalized solution of
the inviscid Burgers’ equation. The numerals give the stream numbers.

Conclusion. The physically significant inviscid limit solutions of the non-homogeneous
Burgers’ equation are fully determined by multistream properties of the gas of non-
interacting particles.

3. Forced inviscid Burgers’ turbulence and the multistream regimes
In this section we carry out a statistical analysis of solutions of the randomly forced

Burgers’ equation. In what follows we shall assume that the potential field U(x, t)
of the random force f(x, t) is a Gaussian random field statistically homogeneous
and isotropic in space, and delta-correlated in time, with zero mean and correlation
function

〈U(x, t)U(x+ y, t+ θ)〉 = 2a(y)δ(θ). (3.1)

Therefore, the random force f(x, t) is also a Gaussian field statistically isotropic in
space with correlation tensor〈

fl(x, t)fm(x+ y, t+ θ)
〉

= 2δ(θ)

[
b(y)δlm +

ylym

y

db(y)

dy

]
, (3.2)

where

b(y) = −1

y

da(y)

dy
, l, m = 1, 2, . . . , d.

3.1. Statistical description of the auxiliary multistreams

As we observed before, the statistical analysis of inviscid Burgers’ turbulence reduces
to the statistical analysis of the stochastic boundary-value problem (2.17)–(2.19). The
presence of boundary conditions, even for the random force f delta-correlated in
time, does not permit direct use of the Markov processes apparatus in the analysis
of statistics of solutions (2.17)–(2.19). To make those powerful tools available, one
has to formulate initially an auxiliary Cauchy problem, the statistical properties of
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which will determine the desired statistical properties of the boundary-value problem
(2.17)–(2.19). As it will become clear from what follows, it is natural to take as such
an auxiliary problem the Cauchy problem

dX

dt
= V ,

dS

dt
= U(X , t) + 1

2
V 2,

dV

dt
= f(X , t),

X (y, t = 0) = y, S(y, t = 0) = V (y, t = 0) = 0,

 (3.3)

dJ

dt
= K ,

dK

dt
= g(X , t)J , J(y, t = 0) = I , K(y, t = 0) = 0, (3.4)

for the scalar field S(y, t), vector fields X (y, t) and V (y, t), and also tensor fields J(y, t)
and K(y, t) with components

Jlm(y, t) =
∂Xl

∂ym
, Klm =

∂Vl

∂ym
.

The following notation has been used: Î is the diagonal unit matrix and ĝ is a random
tensor with components

glm(x, t) =
∂2U(x, t)

∂xl∂xm
. (3.5)

The Cauchy problem (3.3) has a clear-cut intuitive physical interpretation. It
describes the evolution of coordinates X , action S , and velocity V of particles forced
by f(x, t). The notation clearly displays the dependence on the initial coordinates y
of the particle. This dependence plays a fundamental role in the further analysis. The
Cauchy problems (3.3) and (3.4) together with arbitrarily distributed initial positions
y can be naturally interpreted as a gas of non-interacting particles. The tensors J
and K describe the deformation of an infinitesimal volume ‘frozen’ in the gas. Recall
that y are Lagrangian coordinates of this gas. Their connection with the Eulerian
coordinates x is given by a vector equality

x = X (y, t). (3.6)

For given x and t it is an equation with respect to y. Solving it, we obtain

y = Y (x, t), (3.7)

the Lagrangian coordinates of particles which at time t arrive at a point with Eulerian
coordinates x. We should emphasize that in the general case, the gas of non-interacting
particles has several, say N(x, t) > 1, streams. It means that equation (3.6) may have
several roots. In this case, equation (3.7) defines a multi-valued function assuming N
values

Y 1(x, t), Y 2(x, t), . . . ,YN(x, t). (3.8)

Consider the joint probability density of the solutions of the auxiliary Cauchy problem
(3.3)–(3.4):

P(x, s, v, j , κ; y, t)

=
〈
δ(X (y, t)− x)δ(S(y, t)− s)δ(V (y, t)− v)δ(J(y, t)− j)δ(K(y, t)− κ)

〉
. (3.9)

Let us transform the right-hand side of equality (3.9), using the well-known identity

δ(x− X (y, t)) =

N(x,t)∑
n=1

δ(Y n(x, t)− y)

|J(Y n, t)|
, (3.10)
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for the delta-function (see e.g. Saichev & Woyczynski 1996a), where

J(y, t) = ‖J(y, t)‖ =

∥∥∥∥∂Xl

∂ym

∥∥∥∥ , (3.11)

is the Jacobian of the Eulerian-to-Lagrangian coordinate transformation. Substituting
(3.10) into (3.9) and taking into account the probing property of the delta-function,
we have

|j|P(x, s, v, j , l; y, t) =〈
N(x,t)∑
n=1

δ(Y n(x, t)− y)δ(sn(x, t)− s)δ(vn(x, t)− v)δ(jn(x, t)− j)δ(κn(x, t)− κ)

〉
, (3.12)

where

sn(x, t) = S(Y n, t), vn(x, t) = V (Y n, t), (3.13a)

jn(x, t) = J(Y n, t), κn(x, t) = K(Y n, t) (3.13b)

are fields that describe the state of the gas in the nth of N streams which occur at
point x at time t, and where j is the determinant of the matrix j (j = ‖j‖.) By the
total probability formula, in view of (3.12),

|j|P(x, s, v, ĵ, κ; y, t) =

∞∑
N=1

P (N; x, t)

N∑
n=1

Wn(y, s, v, j , κ; x, t|N), (3.14)

where P (N; x, t) is the probability of the event that at a given point x at time t
we have N streams present, and where Wn(y, s, v, j , κ; x, t|N) is the conditional joint
probability density of random fields (3.8) and (3.13a, b) in the nth stream, given that
the total number of streams is N.

3.2. Approximations for Burgers’ turbulence statistics

In view of (2.22)–(2.24), the sought joint probability density of the least-action
functional, corresponding Lagrangian coordinates Y (x, t), the generalized solution
v(x, t) of the non-homogeneous Burgers equation in the inviscid limit, and the auxiliary
fields j , κ, are expressed in the following fashion through the components of sum (3.14):

W (y, s, v, j , κ; x, t) =

∞∑
N=1

P (N; x, t)W1(y, s, v, j , κ; x, t|N). (3.15)

In the case of statistically homogeneous fields – in what follows we will restrict
our attention to such fields – the probability density of the streams’ number does not
depend on x, and the probability density in (3.14-15) depends only on x− y. Hence,
integrating equalities (3.14–15) over all x, j , κ, we arrive at the relations

〈|J|〉svP(s, v; t) =

∞∑
N=1

P (N; t)

N∑
n=1

Wn(s, v; t|N), (3.16)

W (s, v; t) =

∞∑
N=1

P (N; t)W1(s, v; t|N), (3.17)

more convenient for further analysis. Here 〈...〉sv denotes the average under the
condition that S(y, t) = s, V (y, t) = v are given.

Unfortunately we cannot extract the partial sum (3.17), which is of interest to us,
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from the total sum (3.16). Such an operation is possible in principle, but to find
(3.17) one has to have knowledge of all the joint probability densities for the Cauchy
problem (3.3)–(3.4) under different initial conditions. These joint probability densities
satisfy complex Kolmogorov equations whose solutions are not known. For that
reason we will utilize a semi-qualitative method of finding probability densities of
forced Burgers’ turbulence.

Our main assumption is as follows: there exists a number S̄ (t) – the largest value of
the least-action – such that ∫ S̄ (t)

−∞
W1(s; t|N)ds ≈ 1, (3.18)

and ∫ S̄ (t)

−∞
Wn(s; t|N)ds ≈ 0, n = 2, 3, . . . N,

where

Wn(s; t|N) =

∫ ∞
−∞
Wn(s, v; t|N)ddv, n = 1, 2, . . . , N.

If this assumption is satisfied, then the desired probability density

W (v; t) =

∞∑
N=1

P (N; t)W1(v; t|N)

of Burgers’ turbulence can be approximated by integration of equality (3.16) over all
the values of s in the interval (−∞, S̄ (t)), that is

W (v; t) =

∫ S̄ (t)

−∞
〈|J|〉svP(s, v; t) ds. (3.19)

In addition, the value of S̄ (t) can be determined from the normalization condition

1 =

∫ S̄ (t)

−∞
〈|J|〉sP(s; t) ds (3.20)

for probability density (3.19), where P(s; t) is the probability density of random action
S(y, t) satisfying the auxiliary Cauchy problem (3.3).

Closing this section we will make an additional assumption that the random Jacobian
field J (3.11) is statistically independent of the random fields S(y, t) and V (y, t). In
such a case, the expressions (3.19) for the solutions of the non-homogeneous Burgers
equation and equation for the maximal value of absolute minima S̄(t) (3.20) take a
particularly simple form

W (v; t) = 〈N(t)〉
∫ S̄ (t)

−∞
P(s, v; t) ds, (3.21)

〈N(t)〉
∫ S̄ (t)

−∞
P(s; t) ds = 1.

Note that the last assumption is not really essential and has only a technical nature.
If it is not satisfied then the following calculations do not change qualitatively, but
they do get more complicated. In the test case considered in the next section we
will verify that the statistical dependence between J and S,V does not significantly
affect the final outcome. For that reason, in the remainder of this paper we will
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always assume J to be statistically independent of the values of the vector (S,V ) and
use expression (3.21) instead of the more correct, but much more complex formulas
(3.19)–(3.20).

3.3. A model example

Let us test the conjecture underlying formulas (3.19)–(3.20) on the following simple
model which, however, is relatively close to the problem we are considering. Let, for
a given number of streams N, the values of actions of different streams {S1, . . . SN}
form a family of statistically independent random variables with identical cumulative
distribution functions

F(s) = P (Sn < s).

In each realization, as in (2.23), we will form an order statistic

S1 6 S2 6 . . . 6 SN,

and denote the cumulative distribution function of the nth ordered variable Sn by

FNn (s) = P (Sn < s)).

It is well known that

FNn (s) = 1−
n−1∑
l=0

(
N

l

)( z
N

)l (
1− z

N

)N−l
, (3.22)

and in particular, that the cumulative distribution of the smallest Smin = S1 is equal
to

FN1 (s) = P (S1 < s) = 1−
(

1− z

N

)N
, (3.23)

where z = z(s) = NF(s). Besides, it is clear that

N∑
n=1

FNn = NF = z. (3.24)

Within the framework of this example, the conditional normalizations (3.20) defining
values of S̄ , reduce to the equality

NF = z = 1.

In addition, according to our assumption, conditions

FN1

∣∣∣
z=1
≈ 1,

N∑
n=2

FNn

∣∣∣
z=1
≈ 0, (3.25)

analogous to (3.18) have to be fulfilled. Let us verify to what extent they are valid,
substituting here corresponding expressions from (3.22)–(3.24). This gives

FN1 (̄s) = FN1

∣∣∣
z=1

= 1−
(

1− 1

N

)N
,

RN(S̄ ) =

N∑
n=2

FNn

∣∣∣
z=1

=

(
1− 1

N

)N
.

 (3.26)

Now, for example, it follows that the values of {FN1 (S̄ )} form a monotonically
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Figure 2. Graphs of cumulative distributions of order statistics F∞n (z). The curves have a universal
form and do not depend on the distributions of original random variables S1, S2, . . . One can see
that, for z = 1, the value of F∞1 (1) is rather close to 1, while other cumulative distributions are still
pretty small.

decreasing (as N increases) sequence, the limit of which is

F∞1 (z = 1) = lim
N→∞

FN1 (̄s) = 1− e−1, (3.27)

a quantity one can think of, in this context, as being ‘close’ to 1. Correspondingly,
{RN (̄s)} is a monotonically increasing sequence which, for N → ∞, converges to a
‘small’ number

R∞(z = 1) = lim
N→∞

RN (̄s) = e−1. (3.28)

In this fashion, in the model example under consideration, relations (3.25) are satisfied
with a ‘good’ accuracy, expressed by the limit equalities (3.27)–(3.28).

Furthermore, notice that for arbitrary z and large N → ∞, probability densities of
the order statistics {S 1, S2, ...} are described (see figure 2) by the main asymptotics of
expressions (3.22)–(3.24):

F∞1 (z) = 1− e−z , F∞n (z) = 1− e−z
n−1∑
l=0

zl

l!
,

R∞(z) =

∞∑
m=2

F∞n (z) = z − 1 + e−z .

 (3.29)

We should emphasize here that the original problem of finding statistical properties
of solutions of the non-homogeneous Burgers’ equation is related to the situation
discussed in the above example at very large times, when the average number of
streams

〈N(t)〉 =

∞∑
m=1

NP (N; t) = 〈|J|〉 (3.30)



328 A. I. Saichev and W. A. Woyczynski

is much larger than 1. Indeed, for 〈N〉 � 1 the law-of-large-numbers effects take over,
the random number N(t) of streams is not much different from the mean number

(〈N − 〈N〉〉2)1/2 � 〈N〉,

and one can assume that, for 〈N〉 � 1, the number of streams in each realization is
the same and equal to 〈N(t)〉.

In addition, it is natural to assume that in the multistream regime 〈N〉 � 1, the
particles which arrive at a given time at point x move along strongly dispersed
paths, so that the forces acting on different particles f(Xm(τ), τ); τ ∈ [0, t], actually are
statistically independent. Therefore, the values {S1(x, t), S2(x, t), . . . , S〈N〉(x, t)} of their
actions can be treated as independent parameters of the particles.

4. A test case: two-dimensional unforced Burgers’ turbulence

We shall illustrate the above general statistical approach in the relatively well
understood case of homogeneous Burgers’ turbulence. To be specific, we will restrict
ourselves to the two-dimensional case x ∈ R2. Then, the potential

U(x, t) = S0(x)δ(t),

where S0(x) is the initial velocity field potential, that is

v0(x) = ∇S0(x).

Taking this into account, the auxiliary Cauchy problem (3.3)–(3.4) takes the following
form:

dX

dt
= V ,

dS

dt
= 1

2
V 2,

dV

dt
= 0,

X (y, t = 0) = y, S(y, t = 0) = S0(y), V (y, t = 0) = v0(y),

dJ

dt
= K ,

dK

dt
= 0, J(y, t = 0) = I , K(y, t = 0) = K0(y),


(4.1)

where K0(x) is a tensor with components

K0lm(x) =
∂2S0(x)

∂xl∂xm
.

Let S0(x) be a Gaussian, statistically isotropic field with zero mean and correlation
function

〈S0(x)S0(x+ y)〉 =
σ2

0

κ2
exp

(
− 1

2
κ2y2

)
.

Then the fields S0(x) and v0(x) are statistically independent at the same spatial point,
and the joint probability density of solutions S and V of the Cauchy problem (4.1)
takes the form

P(s, v; t) = wv(v)ws(s− v2t/2), (4.2)

where wv(v) and ws(s) are, respectively, the probability densities of fields v0(x), S0(x)
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which, in the two-dimensional case, are

wv(v) =
1

2πσ2
0

exp

(
− v2

2σ2
0

)
, (4.3)

ws(s) =
κ

(2π)1/2σ0

exp

(
−s

2κ2

2σ2
0

)
. (4.4)

For convenience, let us introduce a dimensionless scalar field

u(x, t) = v2(x, t)/2σ2
0 . (4.5)

It follows from (3.21) and (4.2)–(4.4) that its probability density is given by the
formula

W (u; t) = 1
2
〈N(t)〉e−uerfc (uτ− ρ), (4.6)

where the quantity ρ is determined from the normalization condition

〈N(t)〉
∫ ∞

0

e−uerfc (uτ− ρ)du = 2,

which is not difficult to transform into the following form, more convenient for our
analysis:

〈N(t)〉
[

erfc (−ρ)− exp

(
−ρ2 +

(
ρ− 1

2τ

)2
)

erfc

(
1

2τ
− ρ
)]

= 2. (4.7)

In (4.6)–(4.7), we have introduced the following dimensionless variables:

ρ = κS̄/
√

2σ0, τ = κσ0t/
√

2, (4.8)

and the notation

erfc (z) = 1− erf (z), erf (z) =
2

π1/2

∫ z

0

e−y
2

dy (4.9)

was used for the special error function.
Expressions (4.6)–(4.7) contain the mean value 〈N(t)〉 of the streams’ number, which

will be calculated below. For now, assuming that 〈N(t)〉 is known, observe that it is
not very difficult to solve equation (4.7) numerically with respect to ρ(τ), and define
the probability density (4.6) and corresponding moment functions for any τ. Here, we
will restrict ourselves to the derivation of the asymptotic formulas for the late stage
when multiple discontinuities coalesce (τ� 1, 〈N(t)〉 � 1) in Burgers’ turbulence. At
that stage, equation (4.7) can be replaced, with help of the asymptotic formula

erfc (z) ∼ 1

π1/2z
e−z

2

, z →∞, (4.10)

by the asymptotic relation

ρ2eρ
2

=
〈N(t)〉
4τπ1/2

. (4.11)

If the right-hand side of this equality is much larger than 1, then we get the following
asymptotic formula:

|ρ| ∼
[
ln

(
〈N(t)〉
4τπ1/2

)]1/2

, ρ < 0, |ρ| � 1. (4.12)
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Let us substitute expression (4.12) into (4.6). Using (4.10), we arrive at the following
result:

(i) For τ� 1, 〈N(t)〉 � 1, and |ρ| � 1, the dimensionless kinetic energy u = v2/2σ2
0

in unforced Burgers’ turbulence has the probability density

W (u; τ) = 2|ρ|τ exp(−2|ρ|τu), (4.13)

where ρ and τ are given by (4.8).
In particular, it follows that the average dimensionless kinetic energy 〈u(x, t)〉 in

Burgers’ turbulence in the late stage of multiple shock coalescence, satisifes the
asymptotic law

〈u(x, t)〉 ∼ 1/2|ρ|τ. (4.14)

In relations (4.12)–(4.14), the principal role was played by the average number
〈N(t)〉 of streams in the gas of non-interacting particles. Let us calculate that number
in the two-dimensional case under consideration. For that purpose recall that this
average is connected by formula (3.30) with statistical characteristics of the Jacobian
J(y, t) (3.11):

〈N(t)〉 = 〈|J|〉.
It is known (see e.g. Gurbatov et al. 1991) that in the two-dimensional case the
Jacobian is statistically equivalent to the following random quantity:

J = (1 + 2α)2 − 2β,

where α, −∞ < α < ∞, and β > 0 are statistically independent random quantities
with probability densities

P(α; τ) =
1

(2π)1/2τ
exp

(
− α2

2τ2

)
, Q(β; τ) =

1

(2τ2)1/2
exp

(
− β

2τ2

)
.

The above two formulas permit us to obtain an exact expression for the probability
density of the Jacobian:

P(j; τ) =
1

8
√

3τ2
exp

(
j

4τ2
− 1

12τ2

)

×


2 if j < 0

2− erf

((
3j

8τ2

)1/2

− 1

4
√

3τ

)
− erf

((
3j

8τ2

)1/2

+
1

4
√

3τ

)
if j > 0.

(4.15)

wherefrom, after simple calculations, we obtain that

〈N(t)〉 = 1 +
8√
3
τ2 exp

(
− 1

12τ2

)
. (4.16)

In particular, for τ → ∞, the average number of streams satisfies the following
asymptotic power law:

〈N(t)〉 ∼ 8√
3
τ2. (4.17)

Subsituting it into (4.12), we find that

|ρ| ∼
[
ln

(
τ

(3π)1/2

)]1/2

, τ� 1, (4.18)

which gives the following result:
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Figure 3. Time evolution of the exact (top line; see (4.16)) and asymptotic (bottom line; see (4.17))
average number 〈N(t)〉 of streams in two-dimensional homogeneous Burgers’ turbulence. Initially,
when the dimensionless time τ < 1, the number of streams is close to 1, and the discontinuities of
v(x, t) are practically absent. In the late stages τ� 1 of the multiple shock coalescence, the number
of shocks is well described by the asymptotic formula (4.17).

(ii) The average kinetic energy (4.14) of the unforced two-dimensional inviscid Burgers
turbulence decays, at sufficiently large times, as

〈u(x, t)〉 ∼
(

2τ

[
ln

(
τ

(3π)1/2

)]1/2
)−1

,

where τ = κσ0t/
√

2.

Note that the above result agrees well with the asymptotic expression for the average
kinetic energy in Burgers’ turbulence obtained for the one-dimensional problem by
a different asymptotic approach in Tatsumi Kida (1972) and Gurbatov et al. (1991).
This also is indirect evidence in support of our conjecture that S and V are actually
statistically independent of the Jacobian J . Recall that this conjecture permitted us
to replace the more precise expressions (3.19)–(3.20) by expressions (3.21) which are
more convenient for calculations.

Remark 4.1. For τ → ∞, the probability density of the Jacobian (4.15) has the
following self-similar property:

P(j; τ) ∼ 1

c〈N〉P∞
(

j

c〈N〉

)
, (4.19)

where

P∞
(z
c

)
=

2

3
exp

(
z√
12

)
×
{

1 if z < 0

1− erf
(√

z
√

3
)

if z > 0,
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and c is a normalizing constant, which in this case is

c =
4√
15

(
3
√

6− 2
√

5
)
.

The self-similarity (4.19) of the Jacobian’s probability density, which is clear in the
homogeneous case, will be used later on in the multidimensional and forced case as
an assumption under which we will find the rate of growth for the time evolution of
〈N(t)〉 and of the average kinetic energy. In the one-dimensional case, we will be able
to use a more precise approach to study the convergence of Burgers’ turbulence to a
stationary regime.

5. Statistical properties of forced Burgers’ turbulence
5.1. Statistics of non-interacting particles’ action

Let us apply the algorithm proposed above to the calculation of statistical properties
of forced Burgers’ turbulence. First, we shall study the probability density of solutions
of the auxiliary Cauchy problem (3.3). It follows from (3.1)–(3.3) that action S(y, t)
can be represented as a sum of two statistically independent summands

S(y, t) = S1(y, t) + S2(y, t). (5.1)

Moreover, the first summand is also independent of the random velocity V (y, t) and
has the probability density

P1(s; t) =
1

2(πat)1/2
exp

(
− s2

4at

)
, a = a(0). (5.2)

Furthermore, the joint probability density of the second summand in (5.1) and the
velocity field V (y, t) satisfies the following Kolmogorov equation

∂P2

∂t
+

1

2
v2 ∂P2

∂s
= b∆vP2, b = b(0), (5.3)

P2(s, v; t = 0) = δ(s)δ(v).

Respectively, the joint probability density of the full action S(y, t) and the velocity
V (y, t) is equal to

P(s, v; t) = P1(s; t)⊗P2(s, v; t), (5.4)

where the symbol ⊗ means the convolution operation, here with respect to variable s.
Let us pass from (5.3) to an equation for the function

θ(µ, ν; t) =

∫ ∞
0

ds

∫ ∞
−∞
. . .

∫ ∞
−∞
P2(s, v; t) exp[−µs+ i(ν · v)]ddv. (5.5)

That equation has the form

∂θ

∂t
=
µ

2
∆νθ − bν2θ, θ(µ, ν; t = 0) = 1. (5.6)

We shall look for a solution of this Cauchy problem in the form

θ(µ, ν; t) = exp[q(µ, t)− 1
2
p(µ, t)ν2]. (5.7)
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Substituting (5.7) into (5.6), we arrive at the following equations for q and p:

dq

dt
+
µd

2
p = 0, q(µ, 0) = 0,

dp

dt
+ µp2 = 2b, p(µ, 0) = 0,

the solutions thereof, under the initial conditions indicated above, are

p(µ, t) =
τ

δ1/2
tanh δ1/2, q(µ, t) = −d

2
ln(cosh δ1/2),

where new variables

δ = 2µbt2, τ = 2bt, (5.8)

have been introduced. Substituting the above expressions for p and q into (5.7), we
obtain that

θ(µ, ν; t) =

(
1

cosh δ1/2

)d/2
exp

(
− τ

2
ν2 tanh δ1/2

δ1/2

)
. (5.9)

In particular, for ν = 0, we have the expression

θ2(µ; t) =

(
1

cosh δ1/2

)d/2
(5.10)

for the Laplace transform

θ2(µ; t) =

∫ ∞
0

e−µsP2(s; t) ds (5.11)

of the probability density of the second action component S2.
Finally, calculating the inverse Fourier transform with respect to ν , we pass from

(5.9) to the following expression:

Φ(µ, v; t) =

(
δ1/2

2πτ sinh δ1/2

)d/2
exp

(
− v2δ1/2

2τ tanh δ1/2

)
(5.12)

for the Laplace transform

Φ(µ, v; t) =

∫ ∞
0

e−µsP2(s, v; t) ds (5.13)

of the probability density P2(s, v; t) with respect to the variable s.
Introduce an auxiliary dimensionless random variable

G2 = S2(y, t)/2bt
2. (5.14)

It follows from (5.10) that probability density P̃2(g) is independent of time and has
the Laplace transform

θ̃2(δ) =

∫ ∞
0

P̃2(g)e−δgdg =
1

cosh δ1/2
. (5.15)

Here, as in the previous section, we have taken d = 2. Using the inverse Laplace
transform of (5.15) we get

P̃2(g) = 〈δ(g − G2)〉 =

∞∑
k=0

(−1)k
2k + 1

(πg)1/2g
exp

(
− (2k + 1)2

4g

)
. (5.16)
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The probability density of the full, normed with respect to (5.14), action is equal to
the convolution

P̃(g; τ) = P̃2(g)⊗ P̃1(g; τ) (5.17)

of the probability density (5.16), and the Gaussian probability density

P̃1(g; τ) =
1

(2πε2)1/2
exp

(
− g2

2ε2

)
, (5.18)

obtained from (5.2) by passing to dimensionless variables τ and g = s/2bt2. In (5.18),
the dimensionless parameter

ε = 2(ab/τ3)1/2. (5.19)

For sufficiently large times, when ε � 1, the probability density P1 (5.18) plays the
role of a delta-function in convolution (5.17), and we can use an approximate formula

P̃(g) ≈ P̃2(g). (5.20)

5.2. Asymptotics of the largest value of the least action

The above discussion of statistical properties of the action of non-interacting particles
will help us to find the largest value of least action S̄ which, in turn, will determine
statistical properties of Burgers’ turbulence in the inviscid limit. Let us introduce,
similar to (5.14), dimensionless value

ρ = S̄/2bt, (5.21)

For very large times, when ε� 1 (see (5.2)) and additionally 〈N(t)〉 � 1, it is sufficient
to know the behavior of function (5.16) for small g � 1. For such g, the sum (5.16)
is approximately equal to its first summand. As a result, we arrive at the asymptotic
formula

P̃(g) ∼ 1

(πg)1/2g
exp

(
− 1

4g

)
, ε� 1, g � 1. (5.22)

Similarly, it is not difficult to show that in the space of arbitrary dimension d, the
probability density of action is described by an asymptotic expression

P̃(g) ∼
(

2d

πg

)1/2
d

4g
exp

(
− d2

16g

)
, ε� 1, g � 1. (5.23)

Consequently, the equation for ρ

〈N(t)〉
∫ ρ

0

P̃(g) dg = 1 (5.24)

assumes the form

〈N(t)〉
√

2d erfc (−d/4ρ1/2) = 1. (5.25)

Utilizing the asymptotic formula (4.10), we can reduce (5.25) to the transcendental
equation

〈N(t)〉4
d

(
2dρ

π

)1/2

exp

(
− d2

16ρ

)
= 1, (5.26)

the asymptotic solution of which can be written in the form

ρ = d2
/

16 ln

(
〈N(t)〉

(
2d+1

π

)1/2
)
. (5.27)



Evolution of Burgers’ turbulence in the presence of external forces 335

5.3. Average energy of Burgers’ turbulence

Now we can return to an analysis of the desired statistical characteristics of forced
Burgers’ turbulence. First of all, let us take a look at the behaviour of the average
kinetic energy

〈u(x, t)〉 = 1
2
〈v2(x, t)〉.

Multiply (5.12) by 〈N(t)〉v2/2 and then integrate it over all the values of v. As a
result, we obtain the following auxiliary function:

T (δ, τ) = 〈N(t)〉τd
(

1

cosh δ1/2

)d/2
tanh δ1/2

δ1/2
. (5.28)

To calculate the average kinetic energy, it is necessary to find the inverse Laplace
transform of that function with respect to δ, and then to integrate the obtained
expression with respect to g, over the interval (0, ρ). To implement these steps note
that the behaviour of the desired original function for small values of g, which are of
interest to us, is determined by the behaviour of its Laplace transform (5.28) for large
values of δ. For that reason, we will pass in (5.28) to the corresponding asymptotic
expression

T (δ, τ) ∼ 〈N(t)〉dτ
(

2d

δ

)1/2

e−(d/2)δ1/2

= −4τ〈N(t)〉
√

2d
d

dδ
e−(d/2)δ1/2

, δ � 1.

Finding the inverse Laplace transform of this function, integrating it over g in the
interval (0, ρ), we arrive at the following asymptotic formula for the kinetic energy of
Burgers’ turbulence:

〈u(x, t)〉 ∼ dτ〈N〉
(

2d

π

)1/2 ∫ ρ

0

dg

g1/2
exp

(
− d2

16g

)
.

Replacing the integral by its main asymptotics for ρ� 1, we have

〈u(x, t)〉 ∼ τρ〈N(t)〉16

d

(
2dρ

π

)1/2

exp

(
− d2

16ρ

)
.

Comparing this expression with equation (5.26) we finally obtain the following result:
(i) Let ε = 2(ab/τ3)1/2, τ = 2bt, and 〈N(t)〉 be the average number of streams of

the auxiliary gas of non-interacting particles. Then, for ε � 1, 〈N〉 � 1, the average
dimensionless kinetic energy in forced Burgers’ turbulence has the following asymptotic
behaviour:

〈u(x, t)〉 ≈ 4τρ, (5.29)

where ρ (5.27) is the largest possible value of the least action.
The above conclusion and formula (5.27) give us an opportunity to formulate a

necessary condition for existence of a stationary regime in forced Burgers’ turbulence:
(ii) A necessary condition for the existence of a stationary regime in forced Burgers’

turbulence is the exponential growth

〈N(t)〉 ∼ Ceγτ (5.30)

of the average stream number in the auxiliary gas of non-interacting particles. The
exponent γ determines the limit average energy via the formula

u∞ = lim
t→∞
〈u(x, t)〉 = d2/4γ. (5.31)
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Figure 4. The logarithmic plot of the time evolution of the Jacobian’s second moment.
The exponential asymptotics is clearly visible.

In the multidimensional case, the verification of the exponential growth law (5.30)
requires the knowledge of the joint 2d-dimensional probability density P(j , k; t) for
components of tensors J and K . This is a formidable problem, both analytically and
numerically. Nevertheless, linearity of the corresponding stochastic equations for J
and K enables us to reach some conclusions about the behavior of the forced Burgers’
turbulence for t→∞.

First of all, notice that in the two-dimensional case it is rather easy to derive the
following exact equation for the second moment 〈J2〉 of the Jacobian:

d6〈J2〉
dθ6

− 14
d3〈J2〉

dθ3
− 2θ〈J2〉 = 0, (5.32)

where θ = c1/3t is the dimensionless time, and c is the third coefficient in the power
series expansion

a(y) = a− b

2
y2 +

c

8
y4 − . . .

of function a(y) from (3.1). A suitable solution of equation (5.32) has the form

〈J2〉 =
(

1−
√

3/23
) [

exp(β1θ) + 2 exp(−β1θ/2) cos(
√

3β1θ/2)
]

+
(

1 +
√

3/23
) [

exp(−β2θ) + 2 exp(β2θ/2) cos(
√

3β2θ/2)
]
,

where β1,2 =
√√

69± 7, and it grows monotonically with θ. As θ → ∞, we have the
exponential asymptotics

〈J2〉 ∼ (1−
√

3/23)eβ1θ

(see figure 4).
In addition, it is also clear that

〈N(t)〉 = 〈|J|〉 < 〈J2〉1/2 ∼ exp(β1θ/2). (5.33)
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It means that the average energy of forced Burgers’ turbulence is bounded from below
and satisfies the following asymptotic inequality:

〈u(x, t)〉 > d2b/β1c
1/3. (5.34)

Remark 5.1. If the self-similarity property (4.19) is taken as a working hypothesis
(it has been established in the previous section for unforced Burgers’ turbulence), then
the exponential law (5.30) follows with

γ = β1c
1/3/4b,

and the kinetic energy converges to the stationary value

u∞ = d2b/β1c
1/3

which coincides with the right-hand side of bound (5.34). The one-dimensional case,
where the crucial exponential law (5.30) can be derived by more precise methods, will
be discussed in the next section.

6. Stream-number statistics for a one-dimensional gas of non-interacting
particles

In this section we discuss statistical properties of the Jacobian (3.11) and find an
asymptotic rate of growth of the average number of streams 〈N(t)〉 (3.29). We will
restrict our attention to the one-dimensional case. Then, equations for the Jacobian
(3.4) have the particularly simple form

dJ

dt
= K,

dK

dt
= g(X, t)J. (6.1)

In the delta-correlated approximation used in this paper, the random field g(x, t) can
be replaced by a statistically equivalent Gaussian process g(t) with zero mean and
correlation function

〈g(t)g(t+ θ)〉 = 2cδ(θ). (6.2)

We need to solve equations (6.1) with initial conditions

J(t = 0) = 1, K(t = 0) = 0. (6.3)

Let us introduce an ordered sequence

0 < t1 < t2 < . . . < tm < . . . (6.4)

of times {tm} which are roots of the equation

J(t) = 0. (6.5)

Take one of these times tm as the initial time. Then, the solution of equation (6.1)
sought for t > tm can be written in the form

J(t) = K̃(tm)J̃(t|tm), K(t) = K̃(tm)K̃(t|tm), (6.6)

where J̃(t|tm) and K̃(t|tm) are solutions of equation (6.1) with the initial conditions

J̃(t = tm|tm) = 0, K̃(t = tm|tm) = 1. (6.7)
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Expressing, in turn, K̃(tm) by K̃(tm−1) and so on, we arrive at the equality

K̃(tm) =

m∏
p=1

Kp, (6.8)

where

K1 = K(t1), Kp = K̃(tp|tp−1), p > 1.

Additionally, observe that – according to (6.6) – the product of random variables
(6.8) defines the value J(t) of the solution of the initial value problem (6.1)–(6.3) at
time t > tm:

J(t) = J̃(t|tm)

m∏
p=1

Kp. (6.9)

We emphasize that, for a given value of m, all the factors in the products (6.8)–(6.9)
are statistically mutually independent, since they are functionals of the white noise
g(t) on the non-overlapping time intervals (tp−1, tp). It is not difficult to show that an
even more general statement is true: elements of the sequence of random quantities
{Kp, τp}, where

τp = tp − tp−1,

with different indices p and p′ are statistically independent, and the joint probability
density with identical indices

w(κ, τ) = 〈δ(Kp − κ)δ(τp − τ)〉, p > 1,

does not depend on the index p.
Recall that, in the final count, we are interested in the average stream-number
〈N(t)〉 (3.29)

〈N(t)〉 = 〈|J(t)|〉. (6.10)

For sufficiently large times, when 〈N(t)〉 � 1, using the law of large numbers one can
assume that

m = t/〈τ1〉, (6.11)

where 〈τ1〉 is the mean length of the time interval between adjacent zeros of the
process J(t). In this fashion, taking into account (6.9), we obtain the following
conclusion

Conclusion. In forced one-dimensional Burgers’ turbulence, the average stream number

〈N(t)〉 ∼ Ceνt, t� 〈τ1〉,

where the exponent

ν =
1

〈τ1〉
ln
(
〈K〉

)
, (6.12)

and 〈K〉 is the statistical average of any of the random factors in the product (6.8) for
p > 1.

Hence, the calculation of the exponent ν reduces to finding the averages 〈τ1〉 and
〈K〉. These averages can be computed numerically. For that purpose we introduce a
new dimensionless time

θ = c1/3t,
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Figure 5. The histograms of data {θm1 } (a) and {logKm} (b) for M ≈ 8000. The logarithmic scale
was needed in case (b) because of the huge variance of the data

and transform (6.1) into dimensionless equations

dR

dθ
= K,

dK

dθ
= α(θ)R, (6.13)

where α(θ) is a Gaussian, delta-correlated process with correlation function

〈α(θ)α(θ + η)〉 = 2δ(η).

The suggested scheme of numerical calculations of 〈τ1〉 and 〈K〉 requires repeated
numerical solutions of equations (6.13) with initial conditions

R(0) = 0, K(0) = 1,

for a large number M � 1 of statistically independent realizations of α(θ). Stopping
the calculations at the first moment θ = θ1 > 0 when R1(θ1) = 0, we obtain two data
arrays {θm1 } and {Km}, m = 1, 2, . . . ,M, Km = Km(θm1 ), the means of which give us
approximate values of statistical averages of θ1 and K . Notice that 〈θ1〉 is related to
the above-mentioned average 〈τ〉 via an obvious equality

〈τ1〉 = 〈θ1〉c−1/3.

The histograms on figure 5 illustrate the results of M ≈ 8000 such numerical
calculations. In particular, they provide the following estimates: 〈θ1〉 ≈ 4.83, 〈K〉 ≈
81.26, and as a result

ν ≈ 0.91c1/3.
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Appendix A. The Furutsu–Novikov–Donsker formula applied to forced
Burgers’ turbulence

The Furutsu–Novikov–Donsker formula

〈fi(x)R[f]〉 =

∫
〈fi(x)fk(x

′)〉
〈

δR[f]

δf(x′)dx

〉
dx′,

where δR[f]/δf is the variational derivative of the functional R, introduced by
Furutsu (1963) in the context of the statistical theory of electromagnetic waves
in a fluctuating medium, and by Novikov (1964) in a study of randomly forced
turbulence, is a powerful tool in the analysis of random processes and fields. Donsker
(1964) obtained it independently while studying the mathematical theory of path
integrals. The formula explicitly calculates the correlation of an arbitrary zero-mean
Gaussian field f(x) = (fi(x))i and its analytic functional R[f], and is obtained by a
straightforward formal comparison of the functional power series expansions of the
left-hand side and the right-hand side.

We will illustrate its usefulness by applying it to evaluate the correlation
〈f(x, t)υ(x, t)〉, where f(x, t) is a Gaussian random field with zero mean and correlation
function (1.7), and υ(x, t) is the solution of one-dimensional Burgers’ equation (1.5). In
this case, the Furutsu–Novikov–Donsker formula yields the following exact equality:

〈f(x, t)υ(x+ z, t)〉 =

∫
dy

∫ t

0

dτ〈f(x, t)f(y, τ)〉
〈
δυ(x+ z, t)

δf(y, τ)

〉
. (A 1)

Applying the variational derivative it to Burgers’ equation (1.5) gives

∂

∂t

(
δυ(x, t)

δf(y, τ)

)
+

∂

∂x

(
υ(x, t)

δυ(x, t)

δf(y, τ)

)
= µ

∂2

∂x2

δυ(x, t)

δf(y, τ)
+ δ(x− y)δ(t− τ).

Now, taking into account the causality principle, one can replace the above linear
equation for the variational derivative sought by the following Cauchy problem for
the homogeneous equation:

∂

∂t

(
δυ(x, t)

δf(y, τ)

)
+

∂

∂x

(
υ(x, t)

δυ(x, t)

δf(y, τ)

)
= µ

∂2

∂x2

δυ(x, t)

δf(y, τ)
,

δυ(x, t = τ)

δf(y, τ)
= δ(x− y).

 (A 2)

Substituting into (A1) the correlation function (1.7), we obtain

〈f(x, t)υ(x+ z, t)〉 =

∫
dy Γf(y − x)

∫ t

0

δ(t− τ)
〈
δυ(x+ z, t)

δf(y, τ)

〉
dτ,

or, using the probing property of the Dirac delta,

〈f(x, t)υ(x+ z, t)〉 =
1

2

∫
dyΓf(y − x)

〈
δυ(x+ z, t)

δf(y, t)

〉
.

So, finally, in view of equality (A2),

〈f(x, t)υ(x+ z, t)〉 =
1

2
Γf(z).
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Appendix B. Mechanism of energy dissipation in inviscid one-dimensional
Burgers’ turbulence

In this Appendix we discuss, in the relatively simple one-dimensional case, the
mechanism of energy dissipation in inviscid Burgers’ turbulence and the corresponding
problems of steady-state regimes maintained in the presence of external forces.

First, let us consider the homogeneous Burgers’ equation

∂υ

∂t
+ υ

∂υ

∂x
= µ

∂2υ

∂x2
,

υ(x, t = 0) = υ0(x),

where υ0(x) is a stationary and homogeneous random field. Then, obviously, the
solution υ(x, t) of this equation is also a statistically homogeneous function of x. This
means that the average energy

〈u(x, t)〉 = 1
2

〈
υ2(x, t)

〉
obeys to the equation

d 〈u〉
dt

= −ε̄, (B 1)

where the energy dissipation rate is defined by the formula

ε̄ = µ
〈
g2(x, t)

〉
, (B 2)

where

g(x, t) =
∂υ(x, t)

∂x
is Burgers’ turbulence velocity gradient. It is clear from (B2) that, in the inviscid
limit µ→ 0+, dissipation occurs only in the infinitesimal vicinities of Burgers’ velocity
shock fronts, where the velocity gradient has big jumps of size ∼ 1/µ. These large
peaks balance the influence of the vanishing coefficient µ at the right-hand side of
(B2).

To recover the detailed mechanism of energy dissipation in the inviscid limit let
us recall (see e.g. Gurbatov et al. 1991) the universal shape of Burgers’ equation’s
solution in a small vicinity of the shock front of size a, moving with velocity V , and
situated at the point x∗ = x− Vt+ C:

υs(x− x∗, a) = V − a

2
tanh

(
a(x− x∗)

4µ

)
.

The corresponding velocity field gradient has, in the vicinity of this shock, the form

gs(x− x∗, a) = − a
2

8µ

1

cosh2
(
a(x− x∗)/4µ

) . (B 3)

It is physically natural to assume that, for sufficiently small viscosity µ, the gradient
is of the same shape in the case of a forced Burgers’ velocity field. So, neglecting
the contribution to the dissipation rate of the gradient field realizations in between
shocks, we can write these realizations in the form of a series of non-overlapping
peaks:

g(x, t) =
∑
k

gs(x− xk, ak), (B 4)
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where xk and ak are coordinates and amplitudes of successive shocks. Substituting
(B4) into (B2), and taking into account (B3), we get

ε̄ =

〈
ϑa4

64µ

∞∫
−∞

dx

cosh4
(
ax/4µ

)〉 ,
where ϑ(a, t) denotes the average spatial frequency of shocks with amplitude a at the
time t, and angle brackets denote statistical averaging over random shock amplitudes
ak . Evaluating the integral we get

ε̄ =

〈
ϑa3
〉

12
.

For the forced one-dimensional Burgers’ equation (1.5) and delta-correlated Gaussian
forces (1.7), in view of (1.9) (see also Appendix A), the average energy obeys an
equation similar to (B):

d 〈u〉
dt

= −ε̄+ 1
2
Γf,

where Γf = Γf(z = 0). At the initial stage, when shocks are virtually absent (ϑ ≈ 0),
we get

d 〈u〉
dt

= 1
2
Γf,

and the energy of turbulence is increasing linearly:

< u >≈ 1
2
tΓf.

Then the growth rate of ε̄ is reduced due the appearance of shock fronts in Burgers’
velocity field realizations. Eventually, for the steady-state regime of forced Burgers’
turbulence, the frequency of shocks, their amplitudes and the statistical properties of
external forces are tied by the equality〈

ϑa3
〉

= 6Γf.
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